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We numerically investigated the quantum-classical transition in rf-superconducting quantum interference
device �SQUID� systems coupled to a dissipative environment. It is found that chaos emerges and the degree
of chaos, the maximal Lyapunov exponent �m, exhibits nonmonotonic behavior as a function of the coupling
strength D. By measuring the proximity of quantum and classical evolution with the uncertainty of dynamics,
we show that the uncertainty is a monotonic function of �m /D. In addition, the scaling holds in SQUID
systems to a relatively smaller �ef f, suggesting the universality for this scaling.
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I. INTRODUCTION

How classical behavior arises in a quantum mechanical
system is one of the essential questions in quantum theory,
and has long attracted intense interest. The quantum to clas-
sical transition �QCT�, which has been well understood to be
mainly induced by decoherence caused by the coupling with
the environment �1,2�, attains some progresses in recent
years. It is proposed that the QCT is controlled by relevant
parameters including the effective Planck constant �ef f �i.e.,
the relative size of the Planck constant�, a measure of the
coupling with the environment D, and the Lyapunov expo-
nent �, for chaotic systems �3�. By computing measures
which directly reflect the “distance” between quantum and
classical evolutions, it is shown that the distance is con-
trolled by a composite parameter of the form �=����D�.
Many efforts on investigating the coefficients �, �, � have
been made �4,5� in different systems such as the kicked har-
monic oscillator and the Duffing oscillator. However, in the
previous systems, � is generally a constant. Therefore, the
direct illustration of the effect of the Lyapunov exponent �
on the computed distance is still open.

In this paper we try to explore the parameter scaling in
QCT by using the system of the superconducting quantum
interference device �SQUID�. rf-SQUID system has been
demonstrated as a well controllable decoherent quantum sys-
tem. Macroscopic quantum phenomena such as resonant tun-
neling �6� and level quantization �7� and quantum superpo-
sition �8� have been reported. On the other hand, the strong
coupling between the SQUID and the environment can intro-
duce chaos. As early as 1983, the chaotic behavior of the
SQUID treated as a semiclassical model had been found. �9�
Recently, a research shows that a three-junction SQUID can
be used to study the dynamics of quantum chaos. �10� Such
works motivate us to study the chaotic behavior of SQUID
under decoherence induced by environment, which enables
us to directly demonstrate the effect of the Lyapunov expo-
nent on QCT.

This paper is organized as follows. In Sec. II we numeri-
cally investigate the chaotic dynamics of SQUID with cou-

pling to an external environment, and it is shown that the
maximal Lyapunov exponent �m, which quantifies the cha-
otic degree of SQUID, is nonmonotonic as a function of D, a
measure of the coupling. Thus we can say in some regimes
of D, the chaos of SQUID is suppressed by the decoherence
induced by environment �11�. In Sec. III we use the uncer-
tainty of dynamics as the distance between quantum and
classical evolutions, and show that the uncertainty behaves
rightly, even in the chaos suppressed region, as a monotonic
function of �m /D. To the best of our knowledge, this is the
first direct demonstration of the scaling relation since it was
proposed �3�.

II. CHAOTIC DYNAMICS OF SQUID

The rf-SQUID system considered here consists of a large
superconducting loop interrupted by a single Josephson junc-
tion with a critical current Ic. Under the driving of a external
flux �ex�t� with the form of �ex�0�cos��dt� �where �ex�0�
and �d respectively denote the driving amplitude and driving
frequency�, the Hamiltonian for the SQUID system can be
given as

ĤD =
q̂2

2C
+

��̂ − �ex�t��2

2L
+

Ic�0

2	
cos�2	�̂/�0� , �1�

where C is the junction capacitance, L is the rf-SQUID in-
ductance and �0=h /2e denotes the superconducting flux
quantum. The magnetic flux threading the rf-SQUID �̂ and
the total charge on the capacitor q̂ are the conjugate variables
of the system with the imposed commutation relation
��̂ , q̂�= i�.

We can rewrite this Hamiltonian into a dimensionless one
�12� as

ĤD =
Q̂2

2
+

�
̂ − 
ex�t��2

2
+

Ic

2�0e
cos� 2e

���0C

̂� , �2�

in which �0=1 /�LC, 
ex�t�=��0C

� �ex�t�, and

Q̂=�1 /��0Cq̂, 
̂=��0C /��̂ satisfy the commutation rela-

tion �
̂ , Q̂�= i.
Since no chaos can be seen in the dynamics of isolated

quantum systems, �13� to study the chaotic behaviors of the*yuyang@nju.edu.cn
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SQUID system, we couple the system to a dissipated envi-
ronment in the Markovian limit. We adopt the quantum state
diffusion �QSD� �14� approach which is widely used in
studying open quantum systems �15–17� to describe the evo-
lution of this coupled system. The QSD equation for the
evolution of the state vector ��	 reads

�d�	 = −
i

�
Ĥ��	dt + 


j
��L̂j

†	L̂j −
1

2
L̂j

†L̂j −
1

2
�L̂j

†	�L̂j	���	dt

+ 

j

�L̂j − �L̂j	���	d� j , �3�

where Ĥ is the system Hamiltonian and L̂j are the Lindblad
operators representing the coupling with the environment.
d� j are independent complex differential Gaussian random
variables satisfying M�d� j�=M�d�id� j�=0, M�d�i

�d� j�=ijdt
�where M denotes the ensemble mean�. For the SQUID

system considered here, we have Ĥ and L̂ for Eq. �3� as

Ĥ= ĤD+ ĤR, L̂=�D�
̂+ iQ̂�, where ĤD is shown in Eq. �2�,
ĤR= D

2 �
̂Q̂+ Q̂
̂� �15,16� is a damping term added to re-
cover the correct equation of motion in the classical limit,
and D is the strength of the coupling with the environment
mentioned in the beginning.

Using the powerful QSD library, �18� we numerically
solve the Eq. �3� and investigate the change in the dynamics
of the SQUID system when increasing the strength of dissi-
pation. A typical set of SQUID parameters is selected
here, C=0.1 pF, L=300 pH, Ic=2.2 �A, �d=1.14�0,
�ex�0�=0.2684�0, which insures the action of this system is
small enough compared with fixed �. �13� Then we
examine 28 different values of D from slightly dissipated
�D=0.23� to heavily dissipated regime �D=1� in our
calculation, during which we have the same initial state

���t=0�	= ��2��
̂	+ i�Q̂	�= �0.877−0.566i�	—the coherent
state—and same realization of generating the random num-
bers. The quantum Poincaré sections, which each comprises
of 500 points taken at a fixed phase of the external driving
once a driving period, are shown for three representative
values of D in Figs. 1�a�–1�c�. It can be clearly seen in Fig.
1�a� that points forms a uniformly stretched Poincaré profile
in the phase space which indicates “chaos” for D=0.25.
However, for D=0.35 most of points are confined in three
relatively small regions as shown in Fig. 1�b�, which indi-
cates the suppression of chaos. Then the Poincaré profile
similar to the one in Fig. 1�a� is recovered in Fig. 1�c� when
D is increased to 0.45. Some nonmonotonic analogous phe-
nomena have been studied in classical chaotic systems,
�11,19� and a qualitative explanation has been proposed
there. If the chaotic attractors are narrowly and nonuniformly
distributed in phase space, the fluctuation induced by dissi-
pation may cause the neighboring trajectory jump over it,
which results in the suppression of chaos. While further in-
creasing dissipation intensity, the structure of the chaotic at-
tractor may be modified and thus spread wider than before.
Therefore the system becomes chaotic again. Since

��
̂�t�	 , �Q̂�t�	� form classical-like trajectories in our calcu-

lation, we expect that the explanation is also valid for the
suppression of chaos in quantum region.

To describe this transition of chaos quantitatively, we cal-
culate the maximal Lyapunov exponent �m for a time

series—the expectation value of the magnetic flux �
̂�t�	—at
each value of D. The calculation is based on the method and
programs �20,21� which are specifically designed for the
analysis of nonlinear time series. With carefully chosen pa-
rameters as the delay time d=3, the embedding dimension
m=3 and the scaling length s=1.4% for the calculation to
best meet the requirements in Ref. �18�, the sufficient con-
vergency of the Lyapunov exponent is guaranteed. The result
is shown in Fig. 2, in which the graph of �m versus D has a
distinctive dip in a approximate region of D=0.25�0.45,
indicating the suppression of chaos. We also repeat the whole
calculation above in some different realization of random
numbers with the SQUID parameters and the initial state
fixed, and find that the curves are quite analogous to the one
in Fig. 2.

III. EFFECT OF MAXIMAL LYAPUNOV EXPONENT ON
QCT

With the nonmonotonic relationship between maximal
Lyapunov exponent �m and the strength of the coupling with

FIG. 1. Poincaré sections for D=0.25,0.35,0.45, from top to
bottom. From middle panel we can see that points are largely con-
fined in three regions, which indicates a nonmonotonic transition of
chaos.

TING MAO AND YANG YU PHYSICAL REVIEW E 81, 016212 �2010�

016212-2



the environment D, we can directly investigate the effect of
�m on QCT. To measure the distance between quantum and
classical evolution, we use the well known quantity—the un-

certainty of dynamics �=���
̂− �
̂	�2	���Q̂− �Q̂	�2	, which
is simple for calculation and adequate to describe the QCT.

According to the commutation relation �
̂ , Q̂�= i, it follows
that ��0.5. By solving Eq. �3� with same calculating pa-
rameters as in Sec. II, we get a time series of the uncertainty
��t� at each value of D. After averaging each series of ��t�
over a reasonably long time ��100 periods of the external
driving�, we obtained the curve of the averaged uncertainty
�a versus D and showed in Fig. 3�a�, where D has the same
sequence of values as in Fig. 2. It can be clearly seen that in
Fig. 3�a� an obvious dip emerges in the very regime where
chaos is suppressed by the dissipation, which implies QCT
directly depends on the degree of chaos. Motivated by this,
we combine �m and D with the form of �m /D which is in-
ferred in Ref. �2� and look into the relationship between �a
and such composite single parameter. Shown Fig. 3�b� is an
example of �a vs �m /D. One can find that the dip is rubbed

out and �a approximately shows a monotonic increasing in
�m /D with two distinct regimes of small and large increasing
rates. �3� Therefore we demonstrate the scaling between �m
and D holds over a considerable range in �a. It is noticed
that the points which lie in the dip in Fig. 3�a� spread slightly
around the curve in Fig. 3�b�. We conjecture this spread
could be mainly attributed to the calculating error �20� of �m
which is induced by the inevitable quantum noise added into

the trajectory of ��
̂�t�	 , �Q̂�t�	�, especially when chaos is
suppressed and the value of �m is comparatively small.

Now we examine this scaling law for the SQUID system
with a smaller effective Planck constant �ef f. To obtain a
smaller �ef f, it is not straightforward for the SQUID system
to directly manipulate the value of �. �12� Instead, we en-
large the action of the SQUID system simply by changing
parameters in the Hamiltonian; the larger the action the
smaller �ef f, and vice versa. �13� By deliberately selecting
the set of parameters including Ic, L, C, �d, and �ex�0�, we
can enlarge the action and maintain the chaotic dynamics of
the system at the same time. The values of these parameters
are not difficult to modulate for a realistic SQUID system
where Ic could become controllable by replacing the single
Josephson junction with a small loop �dc SQUID� which
contains two identical Josephson junctions �6�, C and L are
both under the upper realistic limit of typical Josephson junc-
tions. We select four sets of parameters for the SQUID sys-
tems each of which has a smaller �ef f compared with the
foregoing system’s. Assuming the smallest �ef f is equal to 1
and comparing the actions of the systems which are mea-
sured with the system size �13�, we approximately gain the
value of other effective Planck constants as follow, 1.2, 1.4,
1.9, 2.6, where 2.6 is the value of the foregoing system’s
�ef f. Then we apply the same calculating procedures to these
systems, and the results are shown in Fig. 4 and Fig. 5 which
also include the data of the foregoing system for comparison.
Figure 4 shows the averaged uncertainty �a as a function of
D, �ef f. For each �ef f, a distinct dip exists as expected in the
region where chaos is suppressed by the dissipation of envi-
ronment. Figure 5 shows the same data plotted as a function
of �m /D, in which, the behavior of �a for each �ef f is con-
siderably the same, which demonstrates the scaling between
�m and D is still valid for a system with relatively small �ef f.

FIG. 2. Maximal Lyapunov exponent �m versus D.The distinc-
tive dip rightly attests the occurrence of suppression of chaos.

FIG. 3. Averaged uncertainty �a as a function of �a� D and �b� a
composite parameter �m /D. The monotonic increase of �a as a
function of �m /D in �b� demonstrated the scaling law.
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FIG. 4. �Color online� Averaged uncertainty �a as a function of
D and �ef f.The parameters for the system with largest effective
Planck constant �ef f =2.6 has been shown in text. Other �ef f and
corresponding sets of parameters are listed in Table I.
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For clarity, we separately show the curve with �ef f =1 in the
inset of Fig. 5. Since a larger action is helpful to undermine
the effect of quantum noise, more accurate �m can be gained

for the system with smaller �ef f, which, is reflected in the
lack of noticeable spread around the curve in the inset. We
also chose some different random numbers generator to re-
peat the calculation for SQUID systems with different �ef f,
and succeed in getting same qualitative conclusions as dis-
cussed above.

IV. CONCLUSION

In summary, we investigated QCT in chaotic rf-SQUIDs.
The suppression of chaos induced by environment dissipa-
tion was observed in quantum regime. It is found that the
quantum to classical transition in the presence of a dissipated
environment is governed by a composite parameter �m /D. It
could be expected the scaling law between �m and D would
holds over a wide range of �ef f. However, to generalize this
scaling to the one involving �ef f, �m, and D and to reveal the
coefficients between them are still open questions needed to
explore.
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